Question:

If \(\overrightarrow{a}=\hat{i}+\lambda\hat{j}-2\hat{k}, \overrightarrow{b}=2\hat{i}-3\hat{j}+5\hat{k}\ and\ \overrightarrow{a}\cdot\overrightarrow{b}=-20\), then the value of \(\lambda\) is equal to

Updated On: Apr 4, 2025
  • 2
  • -2
  • -4
  • 4
  • 5
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Use the dot product formula 
The dot product of two vectors \( \overrightarrow{a} \) and \( \overrightarrow{b} \) is given by: \[ \overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z \] Given: \[ \overrightarrow{a} = \hat{i} + \lambda\hat{j} - 2\hat{k}, \quad \overrightarrow{b} = 2\hat{i} - 3\hat{j} + 5\hat{k} \] Also, we are given: \[ \overrightarrow{a} \cdot \overrightarrow{b} = -20 \]

Step 2: Compute the dot product 
Expanding using the formula: \[ (1 \times 2) + (\lambda \times -3) + (-2 \times 5) = -20 \] \[ 2 - 3\lambda - 10 = -20 \] \[ -3\lambda - 8 = -20 \] \[ -3\lambda = -12 \] \[ \lambda = 4 \]

Final Answer: \( \lambda \) is 4

Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions