Step 1: Use the dot product formula
The dot product of two vectors \( \overrightarrow{a} \) and \( \overrightarrow{b} \) is given by: \[ \overrightarrow{a} \cdot \overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z \] Given: \[ \overrightarrow{a} = \hat{i} + \lambda\hat{j} - 2\hat{k}, \quad \overrightarrow{b} = 2\hat{i} - 3\hat{j} + 5\hat{k} \] Also, we are given: \[ \overrightarrow{a} \cdot \overrightarrow{b} = -20 \]
Step 2: Compute the dot product
Expanding using the formula: \[ (1 \times 2) + (\lambda \times -3) + (-2 \times 5) = -20 \] \[ 2 - 3\lambda - 10 = -20 \] \[ -3\lambda - 8 = -20 \] \[ -3\lambda = -12 \] \[ \lambda = 4 \]
Final Answer: \( \lambda \) is 4.
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are: