\(\frac{π}{3}\)
The correct option is(B): \(\frac{π}{3}\)
\(A=\begin{bmatrix}cosα& -sinα\\ sinα& cosα\end{bmatrix}\)
\(A'=\begin{bmatrix}cosα& sinα\\ -sinα& cosα\end{bmatrix}\)
Now A+A=I
\(\begin{bmatrix}cosα& -sinα\\ sinα& cosα\end{bmatrix}+\begin{bmatrix}cosα& sinα\\ -sinα& cosα\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}\)
\(=>\begin{bmatrix}2cosα& 0\\ 0& 2cosα\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}\)
Comparing the corresponding elements of the two matrices, we have:
2cosα=1
=>\(cos a=\frac{1}{2}=cos\frac{\pi}{3}\)
Therefore \(α=\frac{π}{3}\)
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.