To find the product \(AB\), where \(A= \begin{bmatrix}1&\sqrt{3}&0 \\-\sqrt{3}&1&0 \\ 0&0&2 \end{bmatrix}\) and \(B=\begin{bmatrix}\sqrt{3}&1&0 \\-1&\sqrt{3}&0 \\ 0&0&2 \end{bmatrix}\), we will perform matrix multiplication.
The resulting matrix \(C = AB\) is computed as follows:
For the element \(C_{11}\):
\[ C_{11} = (1)(\sqrt{3}) + (\sqrt{3})(-1) + (0)(0) = \sqrt{3} - \sqrt{3} = 0 \]
For the element \(C_{12}\):
\[ C_{12} = (1)(1) + (\sqrt{3})(\sqrt{3}) + (0)(0) = 1 + 3 = 4 \]
For the element \(C_{13}\):
\[ C_{13} = (1)(0) + (\sqrt{3})(0) + (0)(2) = 0 \]
For the element \(C_{21}\):
\[ C_{21} = (-\sqrt{3})(\sqrt{3}) + (1)(-1) + (0)(0) = -3 - 1 = -4 \]
For the element \(C_{22}\):
\[ C_{22} = (-\sqrt{3})(1) + (1)(\sqrt{3}) + (0)(0) = -\sqrt{3} + \sqrt{3} = 0 \]
For the element \(C_{23}\):
\[ C_{23} = (-\sqrt{3})(0) + (1)(0) + (0)(2) = 0 \]
For the element \(C_{31}\):
\[ C_{31} = (0)(\sqrt{3}) + (0)(-1) + (2)(0) = 0 \]
For the element \(C_{32}\):
\[ C_{32} = (0)(1) + (0)(\sqrt{3}) + (2)(0) = 0 \]
For the element \(C_{33}\):
\[ C_{33} = (0)(0) + (0)(0) + (2)(2) = 4 \]
Hence, the product matrix \(C = AB\) is:
0 | 4 | 0 |
-4 | 0 | 0 |
0 | 0 | 4 |