Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
and $B=\operatorname{adj}(\operatorname{adj}A)$, if $|B|=81$, find the value of $\alpha^2$ (where $\alpha\in\mathbb{R}$).
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
Find the next two terms of the series:
The given series is: \( A, C, F, J, ? \).
(A) O
(B) U
(C) R
(D) V
Choose the correct answer from the options given below: