$ \left(A + B\right)^{2 }= A^{2 }+ B^{2} \Rightarrow AB+ BA= 0$
$\Rightarrow\begin{bmatrix}1&-1\\ 2&-1\end{bmatrix}\begin{bmatrix}x&1\\ y&-1\end{bmatrix}+\begin{bmatrix}x&1\\ y&-1\end{bmatrix}\begin{bmatrix}1&-1\\ 2&-1\end{bmatrix}=0$
$\Rightarrow\begin{bmatrix}x-y&2\\ 2x-y&3\end{bmatrix}+\begin{bmatrix}x+2&-x-1\\ y-2&-y+1\end{bmatrix}=\begin{bmatrix}0&0\\ 0&0\end{bmatrix}$
$\Rightarrow2x-y+2=0....\left(i\right), -x+1=0....\left(ii\right)$
$2x-2=0....\left(iii\right) and-y+4 =0\backslash,\backslash,....\left(iv\right)$
From $\left(ii\right), x = 1$ and from $\left(iv\right), y = 4$
Now, $x + y = 1 + 4 = 5 $