The given series is \( S = I - A + A^2 - A^3 + \cdots \), which is an infinite series. It can be expressed as:
\[ S = (I - A)^{-1} \]if the matrix \( (I - A) \) is invertible.
Step 2: Compute \( I - A \):The identity matrix \( I \) is:
\[ I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]So,
\[ I - A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix} \] Step 3: Check if \( I - A \) is invertible:The determinant of \( I - A \) is:
\[ \det(I - A) = (-1)(3) - (-1)(4) = -3 + 4 = 1 \neq 0 \]Since the determinant is non-zero, \( I - A \) is invertible.
Step 4: Verify the series sum:The inverse of \( I - A \) is:
\[ (I - A)^{-1} = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix} \]Thus, the sum of the series \( S = I - A + A^2 - A^3 + \cdots \) is:
\[ S = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix} \] Conclusion:The correct option is:
\[ \mathbf{(A)} \quad \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix} \]Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to:
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:
where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
Then, which one of the following is TRUE?
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: