The given series is \( S = I - A + A^2 - A^3 + \cdots \), which is an infinite series. It can be expressed as:
\[ S = (I - A)^{-1} \]if the matrix \( (I - A) \) is invertible.
Step 2: Compute \( I - A \):The identity matrix \( I \) is:
\[ I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]So,
\[ I - A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix} \] Step 3: Check if \( I - A \) is invertible:The determinant of \( I - A \) is:
\[ \det(I - A) = (-1)(3) - (-1)(4) = -3 + 4 = 1 \neq 0 \]Since the determinant is non-zero, \( I - A \) is invertible.
Step 4: Verify the series sum:The inverse of \( I - A \) is:
\[ (I - A)^{-1} = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix} \]Thus, the sum of the series \( S = I - A + A^2 - A^3 + \cdots \) is:
\[ S = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix} \] Conclusion:The correct option is:
\[ \mathbf{(A)} \quad \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix} \]