Step 1: For \(A\), \(\mathrm{tr}(A)=6\), \(\det(A)=-1\). By Cayley–Hamilton:
\(A^2-6A-I=0\Rightarrow A^2=6A+I\).
Step 2: Compute:
\(A^3=A(A^2)=A(6A+I)=6A^2+A=36A+6I+A=37A+6I\).
\(A^4=A(A^3)=A(37A+6I)=37A^2+6A=37(6A+I)+6A=228A+37I\).
Step 3: Then
\[
A^{4}+3A^{2}-5A+6I=(228A+37I)+3(6A+I)-5A+6I=241A+46I.
\]
Step 4: For any \(2\times2\) matrix,
\(\det(A+\alpha I)=\alpha^2+\alpha\,\mathrm{tr}(A)+\det(A)\).
With \(\alpha=\tfrac{46}{241}\):
\[
\det(241A+46I)=241^2\det\!\left(A+\tfrac{46}{241}I\right)
=241^2\left(\alpha^2+6\alpha-1\right)=\boxed{10551}.
\]