Question:

If \( A = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ \sin \theta & -\cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \), then the value of \( AA' \) is:

Show Hint

If a matrix \(A\) is orthogonal, then \(AA' = I\). Check orthogonality by verifying that rows (or columns) are orthonormal.
  • \( \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \)
  • \( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)
  • \( \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \)
  • \( \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Use the property \( AA' = I \) for orthogonal matrices.
We are given: \[ A = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ \sin \theta & -\cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \] Compute \( A A' \) using matrix multiplication. Since the dot product of each row and corresponding column gives identity: \[ AA' = I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]
Was this answer helpful?
0
0

Questions Asked in Karnataka PGCET exam

View More Questions