Step 1: Find \( A^2 \)
To find \( A^2 \), we compute the matrix product of \( A \) with itself: \[ A^2 = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 1 & 3 \end{bmatrix} \]
Step 2: Substitute \( A^2 \) into the equation \( A^2 + 7I = kA \)
The equation becomes: \[ \begin{bmatrix} 8 & 5 \\ 1 & 3 \end{bmatrix} + 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = k \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \] Simplifying the left side: \[ \begin{bmatrix} 8 & 5 \\ 1 & 3 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 15 & 5 \\ 1 & 10 \end{bmatrix} \] Now equating to \( kA \), we have: \[ \begin{bmatrix} 15 & 5 \\ 1 & 10 \end{bmatrix} = k \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \] Equating corresponding elements gives \( k = 5 \).
Step 3: Verify the options
The correct value of \( k \) is \( 5 \), matching option (C).
Balance Sheet of Madhavan, Chatterjee and Pillai as at 31st March, 2024
| Liabilities | Amount (₹) | Assets | Amount (₹) |
|---|---|---|---|
| Creditors | 1,10,000 | Cash at Bank | 4,05,000 |
| Outstanding Expenses | 17,000 | Stock | 2,20,000 |
| Mrs. Madhavan’s Loan | 2,00,000 | Debtors | 95,000 |
| Chatterjee’s Loan | 1,70,000 | Less: Provision for Doubtful Debts | (5,000) |
| Capitals: | Madhavan – 2,00,000 | Land and Building | 1,82,000 |
| Chatterjee – 1,00,000 | Plant and Machinery | 1,00,000 | |
| Pillai – 2,00,000 | |||
| Total | 9,97,000 | Total | 9,97,000 |

