Question:

If \[ A=\begin{bmatrix}2 & 3\\3 & 5\end{bmatrix}, \] then find the value of \[ \left|A^{2025}-3A^{2024}+A^{2023}\right|. \]

Show Hint

For determinant-based matrix problems:
Reduce high powers using Cayley–Hamilton theorem
Factor expressions before applying determinant properties
If \(|A|=1\), then \(|A^n|=1\) for all \(n\)
Updated On: Jan 22, 2026
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 16

Solution and Explanation

Concept: To evaluate high powers of a matrix, we use the Cayley–Hamilton theorem. Also, recall the determinant properties:
\(|AB| = |A||B|\)
\(|kA| = k^n|A|\) for an \(n \times n\) matrix
\(|A^n| = |A|^n\)
Step 1: Find the characteristic equation of \(A\). \[ \text{Trace}(A)=2+5=7,\quad |A|=2\cdot5-3\cdot3=1 \] Characteristic equation: \[ \lambda^2 - 7\lambda + 1 = 0 \] By Cayley–Hamilton theorem: \[ A^2 - 7A + I = 0 \] \[ \Rightarrow A^2 = 7A - I \quad \cdots (1) \]
Step 2: Factor the given expression. \[ A^{2025}-3A^{2024}+A^{2023} = A^{2023}(A^2 - 3A + I) \]
Step 3: Simplify \(A^2 - 3A + I\) using (1). \[ A^2 - 3A + I = (7A - I) - 3A + I = 4A \] Thus, \[ A^{2025}-3A^{2024}+A^{2023} = 4A^{2024} \]
Step 4: Take determinant. \[ \left|4A^{2024}\right| = 4^2 \left|A^{2024}\right| = 16\,|A|^{2024} \] Given \(|A|=1\), \[ \left|4A^{2024}\right| = 16 \]
Was this answer helpful?
0
0