Concept:
To evaluate high powers of a matrix, we use the Cayley–Hamilton theorem.
Also, recall the determinant properties:
\(|AB| = |A||B|\)
\(|kA| = k^n|A|\) for an \(n \times n\) matrix
\(|A^n| = |A|^n\)
Step 1: Find the characteristic equation of \(A\).
\[
\text{Trace}(A)=2+5=7,\quad |A|=2\cdot5-3\cdot3=1
\]
Characteristic equation:
\[
\lambda^2 - 7\lambda + 1 = 0
\]
By Cayley–Hamilton theorem:
\[
A^2 - 7A + I = 0
\]
\[
\Rightarrow A^2 = 7A - I \quad \cdots (1)
\]
Step 2: Factor the given expression.
\[
A^{2025}-3A^{2024}+A^{2023}
= A^{2023}(A^2 - 3A + I)
\]
Step 3: Simplify \(A^2 - 3A + I\) using (1).
\[
A^2 - 3A + I = (7A - I) - 3A + I = 4A
\]
Thus,
\[
A^{2025}-3A^{2024}+A^{2023}
= 4A^{2024}
\]
Step 4: Take determinant.
\[
\left|4A^{2024}\right|
= 4^2 \left|A^{2024}\right|
= 16\,|A|^{2024}
\]
Given \(|A|=1\),
\[
\left|4A^{2024}\right| = 16
\]