The inverse of a diagonal matrix is obtained by taking the reciprocal of the diagonal elements. For
\[ A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \]the diagonal elements are 2, 3, and 5. Thus:
\[ A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix}. \]This matches option (A).
Final Answer: \( \boxed{(A)} \)On 31st March, 2024 following is the Balance Sheet of Bhavik Limited :
Bhavik Ltd. 

Additional Information :
(i) During the year a piece of machinery costing Rs 8,00,000 accumulated depreciation thereon Rs 50,000 was sold for Rs 6,50,000
(ii) Debentures were redeemed on 31-03-2024.
Calculate:
(a) Cash flows from Investing Activities
(b) Cash flows from Financing Activities