>
Exams
>
Mathematics
>
Matrices
>
if a begin bmatrix 1 1 0 end bmatrix quad b begin
Question:
If
\[ A = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 3 & 4 \\ 0 & 5 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \]
are three matrices, then find
$ABC$.
Show Hint
When multiplying three matrices, compute them two at a time: first $AB$, then multiply the result with $C$.
CBSE CLASS XII - 2025
CBSE CLASS XII
Updated On:
Jan 13, 2026
Hide Solution
Verified By Collegedunia
Solution and Explanation
We are given matrices: \[ A = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 3 & 4 \\ 0 & 5 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \] Step 1: Compute $AB$ \[ AB = \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ -1 & 3 & 4 \\ 0 & 5 & 1 \end{bmatrix} \] Performing matrix multiplication: \[ AB = \begin{bmatrix} 1 \cdot 2 + (-1) \cdot (-1) + 0 \cdot 0 & 1 \cdot 0 + (-1) \cdot 3 + 0 \cdot 5 & 1 \cdot 1 + (-1) \cdot 4 + 0 \cdot 1 \end{bmatrix} = \begin{bmatrix} 2 + 1 + 0 & 0 - 3 + 0 & 1 - 4 + 0 \end{bmatrix} = \begin{bmatrix} 3 & -3 & -3 \end{bmatrix} \] Step 2: Compute $(AB)C$ \[ ABC = \begin{bmatrix} 3 & -3 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = 3 \cdot 2 + (-3) \cdot 3 + (-3) \cdot 4 = 6 - 9 - 12 = -15 \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Matrices
Let $ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $ and $ P = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} $. Let $ Q = \begin{pmatrix} x & y \\ z & 4 \end{pmatrix} $ for some non-zero real numbers $ x, y, z $, for which there is a $ 2 \times 2 $ matrix $ R $ with all entries being non-zero real numbers, such that $$ QR = RP $$ Then which of the following statements is (are) TRUE?
JEE Advanced - 2025
Mathematics
Matrices
View Solution
Let \( A = \begin{bmatrix} 1 & -2 & -1 \\ 0 & 4 & -1 \\ -3 & 2 & 1 \end{bmatrix}, B = \begin{bmatrix} -5 \\ -2 \end{bmatrix}, C = [9 \ \ 7], \) which of the following is defined?
CBSE CLASS XII - 2025
Mathematics
Matrices
View Solution
Let $ A $ be a matrix of order $ 3 \times 3 $ and $ |A| = 5 $. If
$ |2 \, \text{adj}(3A \, \text{adj}(2A))| = 2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma}, \quad \alpha, \beta, \gamma \in \mathbb{N} $
then $ \alpha + \beta + \gamma $ is equal to
JEE Main - 2025
Mathematics
Matrices
View Solution
The function $f(x) = \begin{vmatrix} x^{2} & x \\ 3 & 1 \end{vmatrix}, x \in \mathbb{R}$ has:
CUET (UG) - 2025
Mathematics
Matrices
View Solution
If $A$ is a non-singular square matrix of order 3 and $|A^{-1}| = 24$, then the value of $|2A(\operatorname{adj}(3A))|$ is:
CUET (UG) - 2025
Mathematics
Matrices
View Solution
View More Questions
Questions Asked in CBSE CLASS XII exam
If Meselson and Stahl's experiment is continued for 80 minutes (till III generation), what would be the ratio of DNA containing N$^{15}$/N$^{15}$ : N$^{15}$/N$^{14}$ : N$^{14}$/N$^{14}$ in the medium?
CBSE CLASS XII - 2025
Molecular Basis of Inheritance
View Solution
A thin pencil of length \( f/4 \) is placed coinciding with the principal axis of a mirror of focal length \( f \). The image of the pencil is real and enlarged, just touches the pencil. Calculate the magnification produced by the mirror.
CBSE CLASS XII - 2025
electrostatic potential and capacitance
View Solution
The diagonals of a parallelogram are given by
\( \mathbf{a} = 2 \hat{i} - \hat{j} + \hat{k} \)
and
\( \mathbf{b} = \hat{i} + 3 \hat{j} - \hat{k}\)
. Find the area of the parallelogram.
CBSE CLASS XII - 2025
Vectors
View Solution
``All producer goods are essentially capital goods.''
Defend or refute the given statement, with the help of a suitable example.
CBSE CLASS XII - 2025
National Income Accounting
View Solution
Find the foot of the perpendicular drawn from the point \( (1, 1, 4) \) on the line \( \frac{x+2}{5} = \frac{y+1}{2} = \frac{z-4}{-3} \).
CBSE CLASS XII - 2025
Distance between point and line
View Solution
View More Questions