If
\( A = \begin{bmatrix}
0 & -\tan\left(\frac{\theta}{2}\right) \\
\tan\left(\frac{\theta}{2}\right) & 0
\end{bmatrix} \)
and
\( (I_2 + A)(I_2 - A)^{-1} =
\begin{bmatrix}
a & -b \\
b & a
\end{bmatrix} \),
then \( 13(a^2 + b^2) \) is equal to __________.
Show Hint
The matrix $(I+A)(I-A)^{-1}$ where $A$ is a skew-symmetric matrix is known as the Cayley transform; it always results in an orthogonal matrix (where $a^2 + b^2 = 1$).
Step 1:
Let \( t = \tan\left(\frac{\theta}{2}\right) \).
Then
\( I + A =
\begin{bmatrix}
1 & -t \\
t & 1
\end{bmatrix} \)
and
\( I - A =
\begin{bmatrix}
1 & t \\
-t & 1
\end{bmatrix} \).
Step 2:
\( (I - A)^{-1}
= \dfrac{1}{1 + t^2}
\begin{bmatrix}
1 & -t \\
t & 1
\end{bmatrix}. \)
Step 3:
\[
(I + A)(I - A)^{-1}
= \dfrac{1}{1 + t^2}
\begin{bmatrix}
1 & -t \\
t & 1
\end{bmatrix}
\begin{bmatrix}
1 & -t \\
t & 1
\end{bmatrix}
= \dfrac{1}{1 + t^2}
\begin{bmatrix}
1 - t^2 & -2t \\
2t & 1 - t^2
\end{bmatrix}.
\]
Step 4:
Comparing with
\( \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \),
we get
\( a = \dfrac{1 - t^2}{1 + t^2} = \cos \theta \)
and
\( b = \dfrac{2t}{1 + t^2} = \sin \theta \).