Step 1: Understanding the Concept:
This problem requires proving a matrix equality. The strategy is to compute the left-hand side (LHS) and the right-hand side (RHS) of the equation separately and then show that they are equal. The proof will heavily rely on trigonometric half-angle identities.
Step 2: Key Formula or Approach:
We will use the half-angle identities for sine and cosine in terms of tangent:
\[
\sin{\alpha} = \frac{2\tan(\alpha/2)}{1 + \tan^2(\alpha/2)}
\]
\[
\cos{\alpha} = \frac{1 - \tan^2(\alpha/2)}{1 + \tan^2(\alpha/2)}
\]
Let \( t = \tan(\alpha/2) \). Then \( \sin{\alpha} = \frac{2t}{1+t^2} \) and \( \cos{\alpha} = \frac{1-t^2}{1+t^2} \).
Step 3: Detailed Explanation or Calculation:
Let \( t = \tan(\alpha/2) \). The matrix \(A\) is
\[
A = \begin{bmatrix} 0 & -t \\[4pt] t & 0 \end{bmatrix}.
\]
Calculate the LHS:
\[
I + A = \begin{bmatrix} 1 & 0 \\[4pt] 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & -t \\[4pt] t & 0 \end{bmatrix} = \begin{bmatrix} 1 & -t \\[4pt] t & 1 \end{bmatrix}.
\]
Calculate the RHS:
First, find \(I - A\):
\[
I - A = \begin{bmatrix} 1 & 0 \\[4pt] 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & -t \\[4pt] t & 0 \end{bmatrix} = \begin{bmatrix} 1 & t \\[4pt] -t & 1 \end{bmatrix}.
\]
The rotation matrix is
\[
R = \begin{bmatrix} \cos{\alpha} & -\sin{\alpha} \\[4pt] \sin{\alpha} & \cos{\alpha} \end{bmatrix}.
\]
Now compute the product \( (I - A)R \):
\[
\text{RHS} = \begin{bmatrix} 1 & t \\[4pt] -t & 1 \end{bmatrix} \begin{bmatrix} \cos{\alpha} & -\sin{\alpha} \\[4pt] \sin{\alpha} & \cos{\alpha} \end{bmatrix}
= \begin{bmatrix}
\cos{\alpha} + t\sin{\alpha} & -\sin{\alpha} + t\cos{\alpha} \\[6pt]
- t\cos{\alpha} + \sin{\alpha} & t\sin{\alpha} + \cos{\alpha}
\end{bmatrix}.
\]
Now substitute the half-angle formulas for \( \sin{\alpha} \) and \( \cos{\alpha} \):
Entry (1,1):
\[
\cos{\alpha} + t\sin{\alpha} = \frac{1-t^2}{1+t^2} + t\left(\frac{2t}{1+t^2}\right)
= \frac{1-t^2+2t^2}{1+t^2} = \frac{1+t^2}{1+t^2} = 1.
\]
Entry (1,2):
\[
-\sin{\alpha} + t\cos{\alpha} = -\frac{2t}{1+t^2} + t\left(\frac{1-t^2}{1+t^2}\right)
= \frac{-2t + t - t^3}{1+t^2} = \frac{-t - t^3}{1+t^2}
= \frac{-t(1+t^2)}{1+t^2} = -t.
\]
Entry (2,1):
\[
- t\cos{\alpha} + \sin{\alpha} = -t\left(\frac{1-t^2}{1+t^2}\right) + \frac{2t}{1+t^2}
= \frac{-t + t^3 + 2t}{1+t^2} = \frac{t + t^3}{1+t^2}
= \frac{t(1+t^2)}{1+t^2} = t.
\]
Entry (2,2):
\[
t\sin{\alpha} + \cos{\alpha} = t\left(\frac{2t}{1+t^2}\right) + \frac{1-t^2}{1+t^2}
= \frac{2t^2 + 1 - t^2}{1+t^2} = \frac{1+t^2}{1+t^2} = 1.
\]
So, the RHS matrix is:
\[
\text{RHS} = \begin{bmatrix} 1 & -t \\[4pt] t & 1 \end{bmatrix}.
\]
Step 4: Final Answer:
We have shown that LHS \(= \begin{bmatrix} 1 & -t \\[4pt] t & 1 \end{bmatrix}\) and RHS \(= \begin{bmatrix} 1 & -t \\[4pt] t & 1 \end{bmatrix}\).
Since LHS = RHS, the identity is proved.