The torque acting on a magnetic dipole in a uniform magnetic field is given by:
\[
\tau = MB \sin\theta
\]
where:
- \( M = 10^{-4} \) Am\(^2\) (magnetic moment),
- \( B = 12 \times 10^{-3} \) T (magnetic field),
- \( \theta = 30^\circ \).
1. Substituting values:
\[
\tau = (10^{-4}) \times (12 \times 10^{-3}) \times \sin 30^\circ
\]
\[
= (10^{-4} \times 12 \times 10^{-3}) \times \frac{1}{2}
\]
\[
= (12 \times 10^{-7}) \times \frac{1}{2}
\]
\[
= 6 \times 10^{-7} \text{ Nm}
\]
Thus, the correct answer is \(\boxed{6 \times 10^{-7} \text{ Nm}}\).