Step 1: Identify the Centers and Radii of the Given Circles
The given equations of circles are:
\[
x^2 + y^2 + 4x - 5 = 0
\]
\[
x^2 + y^2 - 6y + 8 = 0
\]
Rewriting in the standard form:
1st circle:
\[
(x+2)^2 + y^2 = 9
\]
Center: \( (-2, 0) \), \quad Radius: \( r_1 = \sqrt{9} = 3 \)
2nd circle:
\[
x^2 + (y-3)^2 = 4
\]
Center: \( (0, 3) \), \quad Radius: \( r_2 = \sqrt{4} = 2 \)
Step 2: Formula for Centers of Similitude
The internal center of similitude is given by:
\[
I_x = \frac{x_1r_2 + x_2r_1}{r_1 + r_2}, \quad I_y = \frac{y_1r_2 + y_2r_1}{r_1 + r_2}
\]
The external center of similitude is given by:
\[
E_x = \frac{x_1r_2 - x_2r_1}{r_1 - r_2}, \quad E_y = \frac{y_1r_2 - y_2r_1}{r_1 - r_2}
\]
Step 3: Compute Internal Center of Similitude
Substituting values:
\[
I_x = \frac{(-2)(2) + (0)(3)}{3+2} = \frac{-4 + 0}{5} = -\frac{4}{5}
\]
\[
I_y = \frac{(0)(2) + (3)(3)}{3+2} = \frac{0 + 9}{5} = \frac{9}{5}
\]
Thus, the internal center of similitude is:
\[
I \left( -\frac{4}{5}, \frac{9}{5} \right)
\]
Step 4: Compute External Center of Similitude
\[
E_x = \frac{(-2)(2) - (0)(3)}{3-2} = \frac{-4}{1} = -4
\]
\[
E_y = \frac{(0)(2) - (3)(3)}{3-2} = \frac{0 - 9}{1} = -9
\]
Thus, the external center of similitude is:
\[
E(-4, -9)
\]
Step 5: Compute \( (a + d)(b + c) \)
\[
(a + d) = -\frac{4}{5} + (-4) = -\frac{4}{5} - \frac{20}{5} = -\frac{24}{5}
\]
\[
(b + c) = \frac{9}{5} + (-9) = \frac{9}{5} - \frac{45}{5} = -\frac{36}{5}
\]
\[
(a + d)(b + c) = \left(-\frac{24}{5}\right) \times \left(-\frac{36}{5}\right)
\]
\[
= \frac{24 \times 36}{25} = \frac{864}{25} = 13
\]
Thus, the final answer is:
\[
\mathbf{(a + d)(b + c) = 13}
\]