Given the equations: \( ab = 432 \), \( bc = 96 \), and \( c < 9 \). We need to determine the smallest possible value of \( a + b + c \).
First, express \( a \) in terms of \( b \) and \( c \):
\( a = \frac{432}{b} \)
\( b = \frac{96}{c} \)
Substituting \( b \) from the second equation into the first:
\( a = \frac{432}{\frac{96}{c}} = \frac{432c}{96} = \frac{9c}{2} \)
Since \( a \) must be an integer, \( \frac{9c}{2} \) must be an integer:
This implies \( c \) must be even. Given \( c < 9 \), the possible values for \( c \) are 2, 4, 6, and 8.
Calculate \( a + b + c \) for valid \( c \) values:
c | a | b | a+b+c |
---|---|---|---|
2 | \( \frac{9 \times 2}{2} = 9 \) | \( \frac{96}{2} = 48 \) | 9 + 48 + 2 = 59 |
4 | \( \frac{9 \times 4}{2} = 18 \) | \( \frac{96}{4} = 24 \) | 18 + 24 + 4 = 46 |
6 | \( \frac{9 \times 6}{2} = 27 \) | \( \frac{96}{6} = 16 \) | 27 + 16 + 6 = 49 |
8 | \( \frac{9 \times 8}{2} = 36 \) | \( \frac{96}{8} = 12 \) | 36 + 12 + 8 = 56 |
The smallest possible value of \( a + b + c \) is 46 when \( c = 4 \).
\( a \times b = 432 \)
\( b \times c = 96 \)
with the constraint \( c < 9 \)
We list all factor pairs such that \( c < 9 \):
We consider each value of \( b \) from above and check if \( a = \frac{432}{b} \) is an integer:
\( a + b + c = 18 + 24 + 4 = 46 \)
The minimum value of \( a + b + c \) is 46.
Correct Option: (D)
When $10^{100}$ is divided by 7, the remainder is ?