Step 1: Recall two fundamental determinant properties for an \(n\times n\) matrix.
(1) Multiplicativity: \(|AB|=|A|\,|B|\).
(2) Scalar pull-out: \(|kA|=k^n|A|\) (because multiplying a single row by \(k\) scales the determinant by \(k\); doing this to all \(n\) rows scales it by \(k^n\)). For \(n=3\), \(|kA|=k^3|A|\).
Step 2: Rewrite \(|3AB|\) so the scalar can be extracted cleanly.
A convenient trick is to absorb the scalar into one factor:
\[
|3AB|=\big|(3A)B\big|=|3A|\;|B| \text{(by multiplicativity).}
\]
Step 3: Apply the scalar rule to \(|3A|\) for a \(3\times3\) matrix.
\[
|3A|=3^3|A|=27\,|A|.
\]
Step 4: Substitute the given determinant values and compute.
\[
|3AB|=\underbrace{27|A|}_{=27(-1)=-27}\cdot |B|
=(-27)\cdot 3
=-81.
\]
Step 5: Quick consistency checks.
\(\bullet\) Since \(|A||B|=(-1)\cdot 3=-3\), scaling the product \(AB\) by \(3\) should multiply the determinant by \(3^3=27\) (order \(3\)), giving \(27\cdot(-3)=-81\).
\(\bullet\) Beware of the common error \(|3AB|=(3^3)(|A||B|)(3^3)\); the scalar \(3\) appears once (on \(AB\)), not on both factors separately.
Final Answer:
\[
\boxed{-81}
\]
Match List-I with List-II
| List-I (Matrix) | List-II (Inverse of the Matrix) |
|---|---|
| (A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
| (B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
| (C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
| (D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |
Consider the relationships among P, Q, R, S, and T:
• P is the brother of Q.
• S is the daughter of Q.
• T is the sister of S.
• R is the mother of Q.
The following statements are made based on the relationships given above.
(1) R is the grandmother of S.
(2) P is the uncle of S and T.
(3) R has only one son.
(4) Q has only one daughter.
Which one of the following options is correct?