>
Exams
>
Mathematics
>
Matrix
>
if a 2b begin bmatrix 1 2 0 6 3 3 5 3 1 end bmatri
Question:
If \( A + 2B = \begin{bmatrix} 1 & 2 & 0 \\ 6 & -3 & 3 \\ -5 & 3 & 1 \end{bmatrix} \) and \( 2A - B = \begin{bmatrix} 2 & -1 & 5 \\ 2 & -1 & 6 \\ 0 & 1 & 2 \end{bmatrix} \), then \( \text{Tr}[A] - \text{Tr}[B] \) equals:
Show Hint
Use matrix operations systematically: elimination or substitution helps simplify and extract variables. Don't forget that the trace is the sum of the diagonal elements.
AP EAPCET - 2023
AP EAPCET
Updated On:
May 13, 2025
\(1\)
\(2\)
\(3\)
\(4\)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
Step 1: Use matrix equations.
Given: \[ A + 2B = M_1, \quad 2A - B = M_2 \] Multiply equation (1) by 2: \[ 2A + 4B = 2M_1 \] Subtract equation (2): \[ (2A + 4B) - (2A - B) = 2M_1 - M_2 \Rightarrow 5B = 2M_1 - M_2 \Rightarrow B = \frac{1}{5}(2M_1 - M_2) \] Substitute back: \[ A = M_1 - 2B \] Now compute \( \text{Tr}[A] \) and \( \text{Tr}[B] \) from the resulting matrices. \[ \text{Tr}[A] - \text{Tr}[B] = 2 \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Matrix
If \( A = \begin{bmatrix} 1 & 0 \\ -1 & 5 \end{bmatrix} \), then find the value of \( K \) if \( A^2 = 6A + K I_2 \), where \( I_2 \) is the identity matrix.
CBSE CLASS XII - 2025
Mathematics
Matrix
View Solution
Find the value of
$x$,
if
\[ \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]
CBSE CLASS XII - 2025
Mathematics
Matrix
View Solution
If \( A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \) is a \( 2 \times 2 \) matrix, then the eigenvalues of the matrix \( 2A^2 - 4A + 5I \) are ______, where \( I \) is the \( 2 \times 2 \) unit matrix.
AP PGECET - 2025
Mathematics
Matrix
View Solution
Let \( A \) be a \(3 \times 3\) matrix and \( B = 2A^2 + A^{-1} - I \), where \( I \) is a \(3 \times 3\) identity matrix. If the eigenvalues of \( A \) are 1, –1 and 2, then the trace of \( B \) is ________
AP PGECET - 2025
Mathematics
Matrix
View Solution
Let \( A = \begin{bmatrix} a+1 & b & c \\ a & b+1 & c \\ a & b & c+1 \end{bmatrix} \). If determinant of the matrix \( A \) is zero, then \( (a + b + c)^3 = \_\_\_\_\_\_ \)
AP PGECET - 2025
Mathematics
Matrix
View Solution
View More Questions
Questions Asked in AP EAPCET exam
The number of solutions of the equation $4 \cos 2\theta \cos 3\theta = \sec \theta$ in the interval $[0, 2\pi]$ is
AP EAPCET - 2025
Trigonometric Identities
View Solution
The area (in sq. units) of the triangle formed by the tangent and normal to the ellipse \( 9x^2 + 4y^2 = 72 \) at the point (2, 3) with the X-axis is
AP EAPCET - 2025
Coordinate Geometry
View Solution
The equation of the normal drawn at the point \((\sqrt{2}+1, -1)\) to the ellipse \(x^2 + 2y^2 - 2x + 8y + 5 = 0\) is
AP EAPCET - 2025
Geometry
View Solution
If \(\alpha, \beta, \gamma\) are the roots of the equation \[ x^3 - 13x^2 + kx + 189 = 0 \] such that \(\beta - \gamma = 2\), then find the ratio \(\beta + \gamma : k + \alpha\).
AP EAPCET - 2025
Algebra
View Solution
If the distance of a variable point \(P\) from a point \(A(2,-2)\) is twice the distance of \(P\) from the Y-axis, then the equation of locus of \(P\) is:
AP EAPCET - 2025
Triangles
View Solution
View More Questions