Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to:
| List - I | List - II |
|---|---|
| A) Morphine | IV) Pain killer |
| B) Cannabinoids | V) Dopamine |
| C) Cocaine | I) Cardiovascular system |
| D) Benzodiazepines | II) Tranquilizers |