We are given that \( A = 240^\circ \).
First, let's calculate \( \tan A \) and \( \sec A \) for \( A = 240^\circ \).
Step 1: Calculate \( \tan A \) for \( A = 240^\circ \):
- The tangent of \( 240^\circ \) is:
\[
\tan 240^\circ = \tan (180^\circ + 60^\circ) = \tan 60^\circ = \sqrt{3}
\]
Since the angle is in the third quadrant, \( \tan 240^\circ \) is positive:
\[
\tan 240^\circ = \sqrt{3}
\]
So,
\[
\tan^2 240^\circ = (\sqrt{3})^2 = 3
\]
Step 2: Calculate \( \sec A \) for \( A = 240^\circ \):
- The secant is the reciprocal of cosine, and the cosine of \( 240^\circ \) is:
\[
\cos 240^\circ = -\frac{1}{2}
\]
So,
\[
\sec 240^\circ = \frac{1}{\cos 240^\circ} = \frac{1}{-\frac{1}{2}} = -2
\]
Step 3: Now, calculate \( \tan^2 A + \sec A \):
\[
\tan^2 240^\circ + \sec 240^\circ = 3 + (-2) = 1
\]
Thus, the value of \( \tan^2 A + \sec A \) is 1.