Question:

If \(\bar{a}=2\hat{i}+3\hat{j}-4\hat{k}\) and \(\bar{b}=\hat{i}+3\hat{j}+2\hat{k}\), then a unit vector in the direction of \(\bar a +\bar b\) is

Updated On: May 31, 2024
  • \(\frac{1}{6}(3\hat{i}+6\hat{j}-2\hat{k})\)
  • \(\frac{1}{\sqrt{70}}(3\hat{i}+6\hat{j}-5\hat{k})\)
  • \(\frac{1}{7}(3\hat{i}+6\hat{j}-2\hat{k})\)
  • \(\frac{1}{\sqrt{50}}(3\hat{i}+6\hat{j}-3\hat{k})\)
  • \(\frac{1}{\sqrt{6}}(\hat{i}+2\hat{j}-\hat{k})\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The correct option is (C) : \(\frac{1}{7}(3\hat{i}+6\hat{j}-2\hat{k})\)
Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions