We are asked to simplify the expression:
\[
\frac{1 + (a - ib)}{1 + (a + ib)}.
\]
Step 1: Simplify the numerator and denominator:
\[
\text{Numerator: } 1 + (a - ib) = 1 + a - ib.
\]
\[
\text{Denominator: } 1 + (a + ib) = 1 + a + ib.
\]
Thus, the expression becomes:
\[
\frac{1 + a - ib}{1 + a + ib}.
\]
Step 2: Multiply both the numerator and denominator by the conjugate of the denominator:
\[
\frac{(1 + a - ib)}{(1 + a + ib)} \times \frac{(1 + a - ib)}{(1 + a - ib)}
= \frac{(1 + a - ib)^2}{(1 + a)^2 + b^2}.
\]
Step 3: Use the given condition \( a^2 + b^2 = 1 \). Thus, the denominator simplifies to:
\[
(1 + a)^2 + b^2 = 1 + 2a + a^2 + b^2 = 1 + 2a + 1 = 2 + 2a.
\]
Step 4: Now, expand the numerator:
\[
(1 + a - ib)^2 = (1 + a)^2 - 2i b(1 + a) + (-ib)^2 = (1 + 2a + a^2) - 2i b(1 + a) - b^2.
\]
Since \( b^2 = 1 - a^2 \), we get:
\[
(1 + a - ib)^2 = 1 + 2a + a^2 - 2ib(1 + a) - (1 - a^2) = 2a + 2a^2 - 2ib(1 + a).
\]
Step 5: Substitute back into the expression:
\[
\frac{2a + 2a^2 - 2ib(1 + a)}{2 + 2a}.
\]
Now, factor out the common terms:
\[
\frac{2a(1 + a) - 2ib(1 + a)}{2(1 + a)} = \frac{2a - 2ib}{2} = a - ib.
\]
Thus, the correct answer is option (A), \( a - ib \).