3
2
Given:
\[ |\vec{a}| = 2,\quad |\vec{b}| = 3,\quad \theta = 120^\circ \] We are asked to find: \[ \left|\frac{1}{2}\vec{a} - \frac{1}{3}\vec{b}\right|^2 \] Let: \[ \vec{u} = \frac{1}{2}\vec{a} - \frac{1}{3}\vec{b} \] Then: \[ |\vec{u}|^2 = \left(\frac{1}{2}\vec{a} - \frac{1}{3}\vec{b}\right) \cdot \left(\frac{1}{2}\vec{a} - \frac{1}{3}\vec{b}\right) \] Use the identity: \[ |\vec{u}|^2 = \left(\frac{1}{2}\right)^2|\vec{a}|^2 + \left(\frac{1}{3}\right)^2|\vec{b}|^2 - 2\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)\vec{a} \cdot \vec{b} \] Step 1: Compute dot product
\[ \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta = 2 \cdot 3 \cdot \cos(120^\circ) = 6 \cdot \left(-\frac{1}{2}\right) = -3 \] Step 2: Plug in values
\[ |\vec{u}|^2 = \frac{1}{4}(4) + \frac{1}{9}(9) - 2 \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot (-3) \] \[ = 1 + 1 + 1 = 3 \] ✅ Correct answer: 3
We are given:
We need to find:
\[ \left| \frac{1}{2} \vec{a} - \frac{1}{3} \vec{b} \right|^2 \]
Let:
\[ \vec{u} = \frac{1}{2} \vec{a}, \quad \vec{v} = \frac{1}{3} \vec{b} \]
Then:
\[ |\vec{u} - \vec{v}|^2 = \vec{u} \cdot \vec{u} - 2 \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} \]
Now, calculate each term:
Now, plug in these values:
\[ |\vec{u} - \vec{v}|^2 = 1 - 2\left(-\frac{1}{2}\right) + 1 = 1 + 1 + 1 = 3 \]
Therefore, the value of \(\left| \frac{1}{2} \vec{a} - \frac{1}{3} \vec{b} \right|^2\) is \(\boxed{3}\).
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are: