3
2
Given:
\[ |\vec{a}| = 2,\quad |\vec{b}| = 3,\quad \theta = 120^\circ \] We are asked to find: \[ \left|\frac{1}{2}\vec{a} - \frac{1}{3}\vec{b}\right|^2 \] Let: \[ \vec{u} = \frac{1}{2}\vec{a} - \frac{1}{3}\vec{b} \] Then: \[ |\vec{u}|^2 = \left(\frac{1}{2}\vec{a} - \frac{1}{3}\vec{b}\right) \cdot \left(\frac{1}{2}\vec{a} - \frac{1}{3}\vec{b}\right) \] Use the identity: \[ |\vec{u}|^2 = \left(\frac{1}{2}\right)^2|\vec{a}|^2 + \left(\frac{1}{3}\right)^2|\vec{b}|^2 - 2\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)\vec{a} \cdot \vec{b} \] Step 1: Compute dot product
\[ \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta = 2 \cdot 3 \cdot \cos(120^\circ) = 6 \cdot \left(-\frac{1}{2}\right) = -3 \] Step 2: Plug in values
\[ |\vec{u}|^2 = \frac{1}{4}(4) + \frac{1}{9}(9) - 2 \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot (-3) \] \[ = 1 + 1 + 1 = 3 \] ✅ Correct answer: 3
We are given:
We need to find:
\[ \left| \frac{1}{2} \vec{a} - \frac{1}{3} \vec{b} \right|^2 \]
Let:
\[ \vec{u} = \frac{1}{2} \vec{a}, \quad \vec{v} = \frac{1}{3} \vec{b} \]
Then:
\[ |\vec{u} - \vec{v}|^2 = \vec{u} \cdot \vec{u} - 2 \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} \]
Now, calculate each term:
Now, plug in these values:
\[ |\vec{u} - \vec{v}|^2 = 1 - 2\left(-\frac{1}{2}\right) + 1 = 1 + 1 + 1 = 3 \]
Therefore, the value of \(\left| \frac{1}{2} \vec{a} - \frac{1}{3} \vec{b} \right|^2\) is \(\boxed{3}\).
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are:
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: