Step 1: Calculate the value of \(\alpha\).
First, evaluate the constant \(\alpha\) from the given summation:
\[ \alpha = 1 + \sum_{r=1}^{6} (-3)^{r-1} \binom{12}{2r-1} \]
Step 2: Determine the distance to the line.
Apply the point-to-line distance formula:
\[ \text{Distance} = \frac{|Ax + By + C|}{\sqrt{A^2 + B^2}} \]
For the line \(\alpha x - \sqrt{3}y + 1 = 0\) with \(A = \alpha, B = -\sqrt{3}, C = 1\):
\[ \text{Distance} = \frac{|-329 \cdot 12 - \sqrt{3} \cdot \sqrt{3} + 1|}{\sqrt{(-329)^2 + (-\sqrt{3})^2}} \]
\[ = \frac{|-3948 - 3 + 1|}{\sqrt{108241 + 3}} \]
\[ = \frac{3950}{\sqrt{108244}} \approx 5 \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.