Step 1: Calculate the value of \(\alpha\).
First, evaluate the constant \(\alpha\) from the given summation:
\[ \alpha = 1 + \sum_{r=1}^{6} (-3)^{r-1} \binom{12}{2r-1} \]
Step 2: Determine the distance to the line.
Apply the point-to-line distance formula:
\[ \text{Distance} = \frac{|Ax + By + C|}{\sqrt{A^2 + B^2}} \]
For the line \(\alpha x - \sqrt{3}y + 1 = 0\) with \(A = \alpha, B = -\sqrt{3}, C = 1\):
\[ \text{Distance} = \frac{|-329 \cdot 12 - \sqrt{3} \cdot \sqrt{3} + 1|}{\sqrt{(-329)^2 + (-\sqrt{3})^2}} \]
\[ = \frac{|-3948 - 3 + 1|}{\sqrt{108241 + 3}} \]
\[ = \frac{3950}{\sqrt{108244}} \approx 5 \]
The shortest distance between the curves $ y^2 = 8x $ and $ x^2 + y^2 + 12y + 35 = 0 $ is:
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 