Step 1: Calculate the value of \(\alpha\).
First, evaluate the constant \(\alpha\) from the given summation:
\[ \alpha = 1 + \sum_{r=1}^{6} (-3)^{r-1} \binom{12}{2r-1} \]
Step 2: Determine the distance to the line.
Apply the point-to-line distance formula:
\[ \text{Distance} = \frac{|Ax + By + C|}{\sqrt{A^2 + B^2}} \]
For the line \(\alpha x - \sqrt{3}y + 1 = 0\) with \(A = \alpha, B = -\sqrt{3}, C = 1\):
\[ \text{Distance} = \frac{|-329 \cdot 12 - \sqrt{3} \cdot \sqrt{3} + 1|}{\sqrt{(-329)^2 + (-\sqrt{3})^2}} \]
\[ = \frac{|-3948 - 3 + 1|}{\sqrt{108241 + 3}} \]
\[ = \frac{3950}{\sqrt{108244}} \approx 5 \]
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is