We are given the following two infinite geometric series:
1. For \( A \):
\[
A = \frac{1}{1 - r^a}
\]
This implies that:
\[
1 - r^a = \frac{1}{A}
\]
Rearranging this:
\[
r^a = 1 - \frac{1}{A}
\]
Thus, we can write:
\[
r^a = \frac{A - 1}{A}
\]
2. For \( B \):
\[
B = \frac{1}{1 - r^b}
\]
This implies that:
\[
1 - r^b = \frac{1}{B}
\]
Rearranging this:
\[
r^b = 1 - \frac{1}{B}
\]
Thus, we can write:
\[
r^b = \frac{B - 1}{B}
\]
Now, to solve for \( \frac{a}{b} \), we take the logarithm of both sides of each equation.
\[
a \log r = \log \left( \frac{A - 1}{A} \right)
\]
\[
b \log r = \log \left( \frac{B - 1}{B} \right)
\]
Next, we divide the two equations to find \( \frac{a}{b} \):
\[
\frac{a}{b} = \frac{\log \left( \frac{A - 1}{A} \right)}{\log \left( \frac{B - 1}{B} \right)}
\]
Thus, we have:
\[
\frac{a}{b} = \log_r \left( \frac{A - 1}{A} \right) = \log_r \left( \frac{B - 1}{B} \right)
\]
Thus, the answer matches option (C).