By the AM–GM inequality, for any positive \( a \): \[ 1 + a + a^2 \ \ge \ 3\sqrt[3]{a^2} \]
\[ \frac{1 + a + a^2}{a} \ \ge \ 3\sqrt[3]{a} \]
For: \[ E = \prod_{i=1}^n \frac{1 + a_i + a_i^2}{a_i} \] we have: \[ E \ \ge \ \prod_{i=1}^n 3\sqrt[3]{a_i} \]
\[ E \ \ge \ 3^n \cdot \sqrt[3]{\prod_{i=1}^n a_i} \] Since all \( a_i > 0 \), the cubic root is positive.
If all \( a_i \) are not equal, then the AM–GM inequality is strict, so: \[ \boxed{E > 3^n} \]
Consider the following statements: Statement I: \( 5 + 8 = 12 \) or 11 is a prime. Statement II: Sun is a planet or 9 is a prime.
Which of the following is true?
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: