The value of $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^3 + 6k^2 + 11k + 5}{(k+3)!}$ is:
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A collection of numbers that is presented as the sum of the numbers in a stated order is called a series. As an outcome, every two numbers in a series are separated by the addition (+) sign. The order of the elements in the series really doesn't matters. If a series demonstrates a finite sequence, it is said to be finite, and if it demonstrates an endless sequence, it is said to be infinite.
Read More: Sequence and Series
The following are the two main types of series are: