Step 1: Write down the given vectors and conditions.
\[ a = (1, 1, 1) = \hat{i} + \hat{j} + \hat{k} \]
\[ b = (x, y, z) = x\hat{i} + y\hat{j} + z\hat{k} \]
\[ c = (0, 1, -1) = 0\hat{i} + \hat{j} - \hat{k} \]
Conditions:
1. \( a \cdot b = 3 \)
2. \( a \times b = c \)
Step 2: Use the dot product condition \( a \cdot b = 3 \).
\[
% Option
(1)(x) + (1)(y) + (1)(z) = 3
\]
\[
x + y + z = 3 \quad \cdots (1)
\]
Step 3: Use the cross product condition \( a \times b = c \).
Calculate \( a \times b \):
\[
a \times b = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
1 & 1 & 1
x & y & z \end{vmatrix}
\]
\[
a \times b = \hat{i}(1 \cdot z - 1 \cdot y) - \hat{j}(1 \cdot z - 1 \cdot x) + \hat{k}(1 \cdot y - 1 \cdot x)
\]
\[
a \times b = (z - y)\hat{i} - (z - x)\hat{j} + (y - x)\hat{k}
\]
\[
a \times b = (z - y)\hat{i} + (x - z)\hat{j} + (y - x)\hat{k}
\]
We are given \( a \times b = c = 0\hat{i} + 1\hat{j} - 1\hat{k} \).
Equating the components:
\[
z - y = 0 \quad \Rightarrow \quad z = y \quad \cdots (2)
\]
\[
x - z = 1 \quad \Rightarrow \quad x = z + 1 \quad \cdots (3)
\]
\[
y - x = -1 \quad \Rightarrow \quad y = x - 1 \quad \cdots (4)
\]
(Note that (2) and (3) imply (4): \( y = z = x - 1 \)).
Step 4: Solve the system of linear equations (1), (2), and (3).
From (2), \( z = y \). Substitute this into (3):
\[
x = y + 1
\]
Now substitute \( z = y \) and \( x = y + 1 \) into equation (1):
\[
(y + 1) + y + y = 3
\]
\[
3y + 1 = 3
\]
\[
3y = 2
\]
\[
y = \frac{2}{3}
\]
Step 5: Find x and z using the value of y.
\[
z = y = \frac{2}{3}
\]
\[
x = y + 1 = \frac{2}{3} + 1 = \frac{2}{3} + \frac{3}{3} = \frac{5}{3}
\]
Step 6: State the vector b and compare with options.
\[
b = (x, y, z) = \left(\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right)
\]
This result matches option (D).