Given: \( \tan \theta + \cot \theta = 5 \)
Step 1: Express in terms of tan
\[ \cot \theta = \frac{1}{\tan \theta} \] So, \[ \tan \theta + \frac{1}{\tan \theta} = 5 \]
Step 2: Square both sides
\[ \left(\tan \theta + \frac{1}{\tan \theta} \right)^2 = 5^2 \] Expanding using the identity \( (a + b)^2 = a^2 + b^2 + 2ab \), \[ \tan^2 \theta + \cot^2 \theta + 2 = 25 \]
Step 3: Solve for \( \tan^2 \theta + \cot^2 \theta \)
\[ \tan^2 \theta + \cot^2 \theta = 25 - 2 = 23 \]
Final Answer: 23
The given graph illustrates: