We are given the equation:
\[
5 \sinh x - \cosh x = 5.
\]
Recall the definitions of the hyperbolic sine and cosine functions:
\[
\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}.
\]
Substitute these definitions into the given equation:
\[
5 \left( \frac{e^x - e^{-x}}{2} \right) - \left( \frac{e^x + e^{-x}}{2} \right) = 5.
\]
Simplify the terms:
\[
\frac{5(e^x - e^{-x})}{2} - \frac{(e^x + e^{-x})}{2} = 5.
\]
Factor out \( \frac{1}{2} \):
\[
\frac{1}{2} \left( 5(e^x - e^{-x}) - (e^x + e^{-x}) \right) = 5.
\]
Simplify the terms inside the parentheses:
\[
\frac{1}{2} \left( 5e^x - 5e^{-x} - e^x - e^{-x} \right) = 5.
\]
\[
\frac{1}{2} \left( 4e^x - 6e^{-x} \right) = 5.
\]
Multiply both sides by 2:
\[
4e^x - 6e^{-x} = 10.
\]
Now, divide through by 2:
\[
2e^x - 3e^{-x} = 5.
\]
Step 2: Solve for \( \tanh x \).
Let \( y = e^x \), so that \( e^{-x} = \frac{1}{y} \). Substitute these into the equation:
\[
2y - 3\left( \frac{1}{y} \right) = 5.
\]
Multiply through by \( y \):
\[
2y^2 - 3 = 5y.
\]
Rearrange this into a standard quadratic form:
\[
2y^2 - 5y - 3 = 0.
\]
Step 3: Solve the quadratic equation.
Solve the quadratic equation using the quadratic formula:
\[
y = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(-3)}}{2(2)} = \frac{5 \pm \sqrt{25 + 24}}{4} = \frac{5 \pm \sqrt{49}}{4} = \frac{5 \pm 7}{4}.
\]
Thus, the two possible solutions for \( y \) are:
\[
y = \frac{5 + 7}{4} = 3 \quad \text{or} \quad y = \frac{5 - 7}{4} = -\frac{1}{2}.
\]
Step 4: Find \( \tanh x \).
Recall that:
\[
\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.
\]
Using the values of \( y = e^x \) and \( e^{-x} = \frac{1}{y} \), we have:
\[
\tanh x = \frac{y - \frac{1}{y}}{y + \frac{1}{y}}.
\]
For \( y = 3 \):
\[
\tanh x = \frac{3 - \frac{1}{3}}{3 + \frac{1}{3}} = \frac{\frac{8}{3}}{\frac{10}{3}} = \frac{8}{10} = \frac{4}{5}.
\]
For \( y = -\frac{1}{2} \):
\[
\tanh x = \frac{-\frac{1}{2} - 2}{-\frac{1}{2} + 2} = \frac{-\frac{5}{2}}{\frac{3}{2}} = -\frac{5}{3}.
\]
Thus, the correct value of \( \tanh x \) is \( \boxed{-\frac{3}{5}} \).