We are given:
\[ (5.55)^x = 1000 \Rightarrow (5.55)^x = 10^3 \]
\[ x \log_{10}(5.55) = 3 \Rightarrow \log_{10}(5.55) = \frac{3}{x} \]
\[ \log_{10}(5.55) = \log_{10}(10 \times 0.555) = \log_{10}(10) + \log_{10}(0.555) = 1 + \log_{10}(0.555) \]
So, \[ \frac{3}{x} = 1 + \log_{10}(0.555) \tag{1} \]
We are also given: \[ (0.555)^y = 1000 \Rightarrow \log_{10}(0.555) = \frac{3}{y} \tag{2} \]
Substitute \(\log_{10}(0.555) = \frac{3}{y}\) into (1): \[ \frac{3}{x} = 1 + \frac{3}{y} \Rightarrow \frac{3}{x} - \frac{3}{y} = 1 \Rightarrow \frac{1}{x} - \frac{1}{y} = \frac{1}{3} \]
\[ \boxed{ \frac{1}{x} - \frac{1}{y} = \frac{1}{3} } \]
When $10^{100}$ is divided by 7, the remainder is ?