The correct is (C): \(\frac{1}{\sqrt2}\)
\(\frac{x}{\sqrt{1+x^4}}=\frac{1}{\sqrt{\frac{1}{x^2}}}+x^2\)
\(x^2+\frac{1}{x^2}≥2\)
Hence the maximum value of is \(\frac{1}{\sqrt2}\)
Given : \(\frac{x}{\sqrt{1+x^4}}\)
= \(\frac{1}{\sqrt{\frac {1+x^4}{x^2}}}\)
= \(\frac{1}{\sqrt{\frac 1{x^2}+x^2}}\) \(…….. (1)\)
We know that: \(AM ≥GM\)
\(\frac {\frac 1{x^2}+x^2}{2} ≥ 1\)
\(\frac {1}{x^2}+x^2≥2\)
From eq \((1)\),
\(\frac{x}{\sqrt{1+x^4}} = \frac {1}{\sqrt 2}\)
So, the correct option is (C): \(\frac {1}{\sqrt 2}\)