Question:

If \(\frac{5(4x^2+1)-3x}{4x}=8\) and x ≠ 0, then what is the value of \((√2x-\frac{1}{√2x}) \)?

Updated On: Sep 13, 2024
  • \(\sqrt{(\frac{3}{2})}\)
  • \(\sqrt{(\frac{5}{2})}\)
  • \(\sqrt{(\frac{5}{4})}\)
  • \(\sqrt{(\frac{3}{4})}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct option is (A):\(\sqrt{(\frac{3}{2})}\).
\(\frac{5(4x^2+1)-3x}{4x}=8\)
20x2+ 5 - 3x = 32x
20x2+ 5 = 35x
4x2- 7x + 1 = 0
4x2+ 1 = 7x... (i)
\(Now, (\sqrt2x-\frac{1}{\sqrt2x})=2x-2+\frac{1}{2x}\)
=\(\frac{ (4x2- 4x + 1)}{2x}\)
= \(\frac{(7x - 4x)}{2x}\)   (from (i))
Therefore,  \((\sqrt2x-\frac{1}{\sqrt2x})=\sqrt\frac{3}{2}\)
Was this answer helpful?
0
0

Questions Asked in CAT exam

View More Questions