Concept:
We are asked to count the number of \emph{integer lattice points} lying strictly inside the region:
\[
4x^2 + y^2<52
\]
This represents an ellipse centered at the origin.
We count all integer values of \(x\) and corresponding integer values of \(y\) satisfying the inequality.
Step 1: Find possible integer values of \(x\).
\[
4x^2<52 \Rightarrow x^2<13
\]
\[
x = -3, -2, -1, 0, 1, 2, 3
\]
Step 2: Count integer values of \(y\) for each \(x\).
\(x = 0:\quad y^2<52 \Rightarrow |y| \le 7 \Rightarrow 15 \text{ values}\)
\(x = \pm1:\quad y^2<48 \Rightarrow |y| \le 6 \Rightarrow 13 \times 2 = 26\)
\(x = \pm2:\quad y^2<36 \Rightarrow |y| \le 5 \Rightarrow 11 \times 2 = 22\)
\(x = \pm3:\quad y^2<16 \Rightarrow |y| \le 3 \Rightarrow 7 \times 2 = 14\)
Step 3: Add all possible ordered pairs.
\[
15 + 26 + 22 + 14 = 77
\]
\[
\boxed{\text{Number of ordered pairs } = 77}
\]