We are given that \( 49^n + 16n + P \) must be divisible by 64 for all \( n \in \mathbb{N} \).
Step 1: Simplify the equation
First, rewrite the given expression:
\[
49^n + 16n + P \equiv 0 \pmod{64}
\]
Note that \( 49 \equiv 49 \pmod{64} \), so we want to find the behavior of \( 49^n \mod 64 \).
Step 2: Calculate \( 49^n \mod 64 \)
Since \( 49^2 \equiv 49 \pmod{64} \), we find that \( 49^n \equiv 49 \pmod{64} \) for any \( n \geq 1 \).
Thus, the expression becomes:
\[
49 + 16n + P \equiv 0 \pmod{64}
\]
Step 3: Solve for \( P \)
For \( n = 0 \):
\[
49 + P \equiv 0 \pmod{64}
\]
\[
P \equiv -49 \pmod{64}
\]
Since \( -49 \equiv 15 \pmod{64} \), the least negative value for \( P \) is \( -1 \).
Thus, the correct answer is \( -1 \).