For the equation \( x^2 + ax - 4 = 0 \), we substitute \( -4 \) as a root:
\[
16 - 4a - 4 = 0 \quad \Rightarrow \quad a = 3
\]
For the equation \( x^2 + ax + b = 0 \) to have equal roots, the discriminant must be zero:
\[
a^2 - 4b = 0 \quad \Rightarrow \quad 9 - 4b = 0 \quad \Rightarrow \quad b = \frac{9}{4}
\]
Now, we calculate \( \sqrt{a^2 + b^2} \):
\[
\sqrt{a^2 + b^2} = \sqrt{9 + \left( \frac{9}{4} \right)^2} = \frac{5}{2}
\]