A.P
G.P
H.P
none of these
The given result can be expressed as follows :
\(\left\{x-(a-b)^2\right\}+\left\{x-(b-c)^2\right\}+(x-c)^2=0\)
\(x=a-b,x=b-c,x=c\)
\(a-b=b-c=c\)
From \(a-b=b-c,\ 2b=a+c\)
Therefore, \(a,b,c\) can be in A.P.
So, the correct option is (A) : A.P.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to