Given: $ \sin \theta = \frac{3}{5} $, $ \theta $ in 1st quadrant
Use identity:
$$
\sin^2 \theta + \cos^2 \theta = 1
$$
Substituting:
$$
\left( \frac{3}{5} \right)^2 + \cos^2 \theta = 1 \Rightarrow \cos^2 \theta = 1 - \frac{9}{25} = \frac{16}{25}
$$
Since $ \theta $ is in 1st quadrant, $ \cos \theta > 0 $:
$$
\cos \theta = \sqrt{\frac{16}{25}} = \frac{4}{5}
$$
Find $ \tan \theta = \frac{\sin \theta}{\cos \theta} $:
$$
\tan \theta = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}
$$