Question:

If=\(\frac{2x^2+x-6}{(x+2)^2-(x-2)^2}\), Q=\(\frac{x^2+3x+9}{(2x-3)(x^2-4)}\) and \(R=\frac{x^2-27}{x^4-4}\), then find the value of PXQ÷R

Updated On: Sep 13, 2024
  • \(\frac{(x + 2)}{[2 (x - 3)]}\)
  • \(\frac{(x + 2)}{(x - 3)}\)
  • 2\(\frac{(x + 2)}{(x - 3)}\)
  • 4\(\frac{(x + 2)}{(x - 3)}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct option is (A): \(\frac{(x+2)^2}{[2(x-3)]}\)

\(P \times Q÷R\)=\(\frac{2x^2+x-6}{(x+2)^2+(x-2)^2}\times\frac{x^2+3x+9}{(2x-3)(x^2-4)}\times\frac{x^3-27}{x^4-16}\)

After simplifying :

\(\frac{x+2}{2(x^2+4}\times\frac{(x^2+4)}{(x-3)}\)

\(\frac{(x+2)}{2(x-3)}\).

Was this answer helpful?
0
0

Questions Asked in CAT exam

View More Questions