The formula for work is: \[ \text{Work} = (\text{Men}) \times (\text{Days}) \times (\text{Efficiency}) \]
Total work done in the first case: \[ \text{Work} = 20 \times 6 = 120 \text{ man-days to build 66 meters} \]
Work per meter: \[ \frac{120}{66} = \frac{20}{11} \text{ man-days per meter} \]
Total work available: \[ 86 \times 8 = 688 \text{ man-days} \]
\[ \text{Length} = \frac{688}{\frac{20}{11}} \] \[ = 688 \times \frac{11}{20} \] \[ = \frac{688 \times 11}{20} \] \[ = \frac{7568}{20} = 49 \text{ meters} \]
The correct answer is (A) 49 meters.