Question:

If $\tan^{-1} \left(\frac{x}{y}\right) + \log \sqrt{x^{2} +y^{2}} = 0 $ , then $\frac{dx}{dy} = $

Updated On: Jun 21, 2022
  • $\frac{x^{2} +y^{2}}{x^{2} -y^{2}} $
  • $\frac{x - y}{x + y} $
  • $\frac{x + y}{x - y} $
  • $\frac{x^{2} -y^{2}}{x^{2} +y^{2}} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

$\tan^{-1} \left(\frac{x}{y}\right) + \log\sqrt{x^{2} +y^{2}} = 0 $
Differentiating w.r.t. 'y', we get
$\left(\frac{1}{1+\left(\frac{x}{y}\right)^{2}}\right)\left(\frac{y \frac{dx}{dy} -x.1}{y^{2}}\right) + \frac{1}{\sqrt{x^{2}+y^{2}}} . \frac{1}{2} \frac{\left(2x \frac{dx}{dy} +2y\right)}{\sqrt{x^{2} +y^{2}}} = 0$
$ \Rightarrow \left(\frac{y^{2}}{x^{2} +y^{2}}\right)\left(\frac{y \frac{dx}{dy}-x}{y^{2}}\right) + \frac{x \frac{dx}{dy }+y}{\left(x^{2} +y^{2}\right)} = 0 $
$\Rightarrow \frac{y \frac{dx}{dy} -x+x \frac{dx}{dy} +y}{x^{2} +y^{2}} = 0$
$ \Rightarrow \left(y+x\right) \frac{dx}{dy} +y -x = 0 \Rightarrow \frac{dx}{dy} = \frac{x-y}{x+y} $
Was this answer helpful?
0
0

Top Questions on Continuity and differentiability

View More Questions

Concepts Used:

Continuity & Differentiability

Definition of Differentiability

f(x) is said to be differentiable at the point x = a, if the derivative f ‘(a) be at every point in its domain. It is given by

Differentiability

Definition of Continuity

Mathematically, a function is said to be continuous at a point x = a,  if

It is implicit that if the left-hand limit (L.H.L), right-hand limit (R.H.L), and the value of the function at x=a exist and these parameters are equal to each other, then the function f is said to be continuous at x=a.

Continuity

If the function is unspecified or does not exist, then we say that the function is discontinuous.