Question:

If tan1(xy)+logx2+y2=0\tan^{-1} \left(\frac{x}{y}\right) + \log \sqrt{x^{2} +y^{2}} = 0 , then dxdy=\frac{dx}{dy} =

Updated On: Jun 21, 2022
  • x2+y2x2y2\frac{x^{2} +y^{2}}{x^{2} -y^{2}}
  • xyx+y\frac{x - y}{x + y}
  • x+yxy\frac{x + y}{x - y}
  • x2y2x2+y2\frac{x^{2} -y^{2}}{x^{2} +y^{2}}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

tan1(xy)+logx2+y2=0\tan^{-1} \left(\frac{x}{y}\right) + \log\sqrt{x^{2} +y^{2}} = 0
Differentiating w.r.t. 'y', we get
(11+(xy)2)(ydxdyx.1y2)+1x2+y2.12(2xdxdy+2y)x2+y2=0\left(\frac{1}{1+\left(\frac{x}{y}\right)^{2}}\right)\left(\frac{y \frac{dx}{dy} -x.1}{y^{2}}\right) + \frac{1}{\sqrt{x^{2}+y^{2}}} . \frac{1}{2} \frac{\left(2x \frac{dx}{dy} +2y\right)}{\sqrt{x^{2} +y^{2}}} = 0
(y2x2+y2)(ydxdyxy2)+xdxdy+y(x2+y2)=0 \Rightarrow \left(\frac{y^{2}}{x^{2} +y^{2}}\right)\left(\frac{y \frac{dx}{dy}-x}{y^{2}}\right) + \frac{x \frac{dx}{dy }+y}{\left(x^{2} +y^{2}\right)} = 0
ydxdyx+xdxdy+yx2+y2=0\Rightarrow \frac{y \frac{dx}{dy} -x+x \frac{dx}{dy} +y}{x^{2} +y^{2}} = 0
(y+x)dxdy+yx=0dxdy=xyx+y \Rightarrow \left(y+x\right) \frac{dx}{dy} +y -x = 0 \Rightarrow \frac{dx}{dy} = \frac{x-y}{x+y}
Was this answer helpful?
0
0

Top Questions on Continuity and differentiability

View More Questions

Concepts Used:

Continuity & Differentiability

Definition of Differentiability

f(x) is said to be differentiable at the point x = a, if the derivative f ‘(a) be at every point in its domain. It is given by

Differentiability

Definition of Continuity

Mathematically, a function is said to be continuous at a point x = a,  if

It is implicit that if the left-hand limit (L.H.L), right-hand limit (R.H.L), and the value of the function at x=a exist and these parameters are equal to each other, then the function f is said to be continuous at x=a.

Continuity

If the function is unspecified or does not exist, then we say that the function is discontinuous.