If $1+\sin^2(2A)=3\sin A\cos A$, then what are the possible values of $\tan A$?
$1/8,\,4$
We are given \[ 1+\sin^2A=3\sin A\cos A. \] Divide both sides by $\cos^2 A$ (valid for $\cos A\neq0$): \[ \frac{1}{\cos^2A}+\tan^2A=3\tan A. \] But $\frac{1}{\cos^2A}=1+\tan^2A$. So \[ 1+\tan^2A+\tan^2A=3\tan A \quad\Rightarrow\quad 1+2\tan^2A=3\tan A. \] Hence quadratic: \[ 2\tan^2A-3\tan A+1=0. \] Solve: \[ \tan A=\frac{3\pm \sqrt{9-8}}{4}=\frac{3\pm1}{4}. \] So $\tan A=\tfrac12$ or $1$. \[ \boxed{\tfrac12,\,1} \]
Find the missing code:
L1#1O2~2, J2#2Q3~3, _______, F4#4U5~5, D5#5W6~6