If $1+\sin^2(2A)=3\sin A\cos A$, then what are the possible values of $\tan A$?
$1/8,\,4$
We are given \[ 1+\sin^2A=3\sin A\cos A. \] Divide both sides by $\cos^2 A$ (valid for $\cos A\neq0$): \[ \frac{1}{\cos^2A}+\tan^2A=3\tan A. \] But $\frac{1}{\cos^2A}=1+\tan^2A$. So \[ 1+\tan^2A+\tan^2A=3\tan A \quad\Rightarrow\quad 1+2\tan^2A=3\tan A. \] Hence quadratic: \[ 2\tan^2A-3\tan A+1=0. \] Solve: \[ \tan A=\frac{3\pm \sqrt{9-8}}{4}=\frac{3\pm1}{4}. \] So $\tan A=\tfrac12$ or $1$. \[ \boxed{\tfrac12,\,1} \]
The given graph illustrates:
Find the missing number in the table.
Below is the Export and Import data of a company. Which year has the lowest percentage fall in imports from the previous year?
DIRECTIONS (Qs. 55-56): In the following figure, the smaller triangle represents teachers; the big triangle represents politicians; the circle represents graduates; and the rectangle represents members of Parliament. Different regions are being represented by letters of the English alphabet.
On the basis of the above diagram, answer the following questions: