We are given \( \sin^{-1}{x} + \cos^{-1}{x} \) and need to prove that it equals \( \frac{\pi}{2} \).
Step 1: Let \( y = \sin^{-1}{x} \). Then, by the definition of the inverse sine function:
\[
\sin{y} = x, \quad 0 \leq y \leq \frac{\pi}{2}
\]
Step 2: We know that \( \cos^{-1}{x} \) is the angle whose cosine is \( x \). Therefore, we have:
\[
\cos^{-1}{x} = \frac{\pi}{2} - y
\]
Step 3: Therefore:
\[
\sin^{-1}{x} + \cos^{-1}{x} = y + \left( \frac{\pi}{2} - y \right) = \frac{\pi}{2}
\]
Thus, the equation is proved.