Cube roots of unity mean \(\omega^3=1\) and \(1+\omega+\omega^2 = 0 →\)
\(\frac{1}{1+2\omega}+\frac{1}{2+\omega}-\frac{1}{1+\omega}\)
\(=\frac{(2+\omega)+(1+2\omega)}{(1+2\omega)(2+\omega)}-\frac{1}{1+\omega}\)
\(=\frac{3+3\omega}{\omega+2\omega^{2}+2+4\omega}-\frac{1}{1+\omega}\)
\(=\frac{3(1+\omega)}{2\omega^{2}+5\omega+2}-\frac{1}{1+\omega}\)
\(=\frac{(3+3\omega)(1+\omega)-(2\omega^2+5\omega+2}{(2\omega^{2}+5\omega+2)(1+\omega)}\)
\(=\frac{3+3\omega+3\omega+3\omega^2-2\omega^2-5\omega-2}{2\omega^2+5\omega+2+2\omega^3+5\omega^2+2\omega}\)
\(=\frac{\omega^2+\omega+1}{2\omega^3+7\omega^2+7\omega+2}\)
\(=\frac{0}{2\omega^{3}+7\omega^{2}+7\omega+2}\)
\(=0\)
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is:
If \( x^a y^b = e^m, \)
and
\[ x^c y^d = e^n, \]
and
\[ \Delta_1 = \begin{vmatrix} m & b \\ n & d \\ \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} a & m \\ c & n \\ \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} \]
Then the values of \( x \) and \( y \) respectively (where \( e \) is the base of the natural logarithm) are:
A Complex Number is written in the form
a + ib
where,
The Complex Number consists of a symbol “i” which satisfies the condition i^2 = −1. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, -5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.