Cube roots of unity mean \(\omega^3=1\) and \(1+\omega+\omega^2 = 0 →\)
\(\frac{1}{1+2\omega}+\frac{1}{2+\omega}-\frac{1}{1+\omega}\)
\(=\frac{(2+\omega)+(1+2\omega)}{(1+2\omega)(2+\omega)}-\frac{1}{1+\omega}\)
\(=\frac{3+3\omega}{\omega+2\omega^{2}+2+4\omega}-\frac{1}{1+\omega}\)
\(=\frac{3(1+\omega)}{2\omega^{2}+5\omega+2}-\frac{1}{1+\omega}\)
\(=\frac{(3+3\omega)(1+\omega)-(2\omega^2+5\omega+2}{(2\omega^{2}+5\omega+2)(1+\omega)}\)
\(=\frac{3+3\omega+3\omega+3\omega^2-2\omega^2-5\omega-2}{2\omega^2+5\omega+2+2\omega^3+5\omega^2+2\omega}\)
\(=\frac{\omega^2+\omega+1}{2\omega^3+7\omega^2+7\omega+2}\)
\(=\frac{0}{2\omega^{3}+7\omega^{2}+7\omega+2}\)
\(=0\)
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))
A Complex Number is written in the form
a + ib
where,
The Complex Number consists of a symbol “i” which satisfies the condition i^2 = −1. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, -5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.