>
Exams
>
Mathematics
>
Trigonometry
>
if 0 2 x n 0 cos 2n y n 0 sin 2n and z n 0 cos 2n
Question:
If \( 0 < \theta, \phi < \frac{\pi}{2} \), \( x = \sum_{n=0}^{\infty} \cos^{2n} \theta \), \( y = \sum_{n=0}^{\infty} \sin^{2n} \phi \) and \( z = \sum_{n=0}^{\infty} \cos^{2n} \theta \cdot \sin^{2n} \phi \) then :
Show Hint
Remember the basic identity $\sin^2 \theta + \cos^2 \theta = 1$ to relate terms in trigonometric series.
JEE Main - 2021
JEE Main
Updated On:
Jan 9, 2026
xy - z = (x + y)z
xy + z = (x + y)z
xy + yz + zx = z
xyz = 4
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
Step 1:
Sum of infinite G.P. $S = \frac{1}{1-r}$. $x = \frac{1}{1-\cos^2 \theta} = \frac{1}{\sin^2 \theta} \Rightarrow \sin^2 \theta = 1/x$. $y = \frac{1}{1-\sin^2 \phi} = \frac{1}{\cos^2 \phi} \Rightarrow \cos^2 \phi = 1/y$.
Step 2:
$z = \frac{1}{1 - \cos^2 \theta \sin^2 \phi} = \frac{1}{1 - (1-1/x)(1-1/y)}$.
Step 3:
$z = \frac{1}{1 - (1 - 1/x - 1/y + 1/xy)} = \frac{1}{1/x + 1/y - 1/xy} = \frac{xy}{x+y-1}$.
Step 4:
$z(x+y-1) = xy \Rightarrow xz + yz - z = xy \Rightarrow xy + z = (x+y)z$.
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Trigonometry
Let \(m\) and \(n\) be non–negative integers such that for \[ x\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right),\qquad \tan x+\sin x=m,\quad \tan x-\sin x=n. \] Then the possible ordered pair \((m,n)\) is:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Let \(\tan \left( \frac{\pi}{4} + \frac{1}{2} \cos^{-1} \frac{2}{3} \right) + \tan \left( \frac{\pi}{4} - \frac{1}{2} \sin^{-1} \frac{2}{3} \right) = k\). Then number of solution of the equation \(\sin^{-1}(kx - 1) = \sin x - \cos^{-1} x\) is/are :
JEE Main - 2026
Mathematics
Trigonometry
View Solution
In \(\Delta ABC\) if \(\frac{\tan(A-B)}{\tan A} + \frac{\sin^2 C}{\sin^2 A} = 1\) where \(A, B, C \in (0, \frac{\pi}{2})\) then
JEE Main - 2026
Mathematics
Trigonometry
View Solution
Evaluate the limit:
\[ \lim_{x \to 0} \frac{\sin(2x) - 2\sin x}{x^3} \]
JEE Main - 2026
Mathematics
Trigonometry
View Solution
The value of \( \csc 10^\circ - \sqrt{3}\sec 10^\circ \) is:
JEE Main - 2026
Mathematics
Trigonometry
View Solution
View More Questions
Questions Asked in JEE Main exam
A complex number 'z' satisfy both \(|z-6|=5\) & \(|z+2-6i|=5\) simultaneously. Find the value of \(z^3 + 3z^2 - 15z + 141\).
JEE Main - 2026
Algebra
View Solution
Balls are dropped at regular intervals from height 5 m. If the first ball touches the ground when \(6^{th}\) ball is about to be dropped, find the height of \(4^{th}\) ball above the ground at the same instant :
JEE Main - 2026
Kinematics
View Solution
An organic compound (A) on catalytic hydrogenation with \( \mathrm{H_2/Pt} \) gives tetralin, and on oxidation with hot alkaline \( \mathrm{KMnO_4} \) followed by acidification gives phthalic acid. Identify compound (A).
JEE Main - 2026
Organic Chemistry
View Solution
Order of reactivity of nucleophiles given below, \( \text{OH}^- \), \( \text{CH}_3\text{COO}^- \), \( \text{PhO}^- \), \( \text{ClO}_4^- \)
JEE Main - 2026
Organic Chemistry
View Solution
Observe the following reaction sequence:
The final product \( E \) is:
JEE Main - 2026
Organic Chemistry
View Solution
View More Questions