To identify the pair of species having the same energy, we need to consider the energy levels of electrons in hydrogen-like species. The energy of an electron in a hydrogen-like species is given by:
\[
E_n = -\frac{13.6 \, \text{eV} \cdot Z^2}{n^2}
\]
where:
- \( Z \) is the atomic number,
- \( n \) is the principal quantum number.
Analysis of Each Option:
1. Option (1): \( \text{H}(n=1), \text{Li}^{2+} (n=1) \)
- For \( \text{H} \) (Z = 1, n = 1):
\[
E_1 = -\frac{13.6 \cdot 1^2}{1^2} = -13.6 \, \text{eV}
\]
- For \( \text{Li}^{2+} \) (Z = 3, n = 1):
\[
E_1 = -\frac{13.6 \cdot 3^2}{1^2} = -122.4 \, \text{eV}
\]
- Energies are not the same.
2. Option (2): \( \text{Li}^{2+} (n=3), \text{Be}^{3+} (n=4) \)
- For \( \text{Li}^{2+} \) (Z = 3, n = 3):
\[
E_3 = -\frac{13.6 \cdot 3^2}{3^2} = -13.6 \, \text{eV}
\]
- For \( \text{Be}^{3+} \) (Z = 4, n = 4):
\[
E_4 = -\frac{13.6 \cdot 4^2}{4^2} = -13.6 \, \text{eV}
\]
- Energies are the same.
3. Option (3): \( \text{He}^+ (n=1), \text{Li}^{2+} (n=3) \)
- For \( \text{He}^+ \) (Z = 2, n = 1):
\[
E_1 = -\frac{13.6 \cdot 2^2}{1^2} = -54.4 \, \text{eV}
\]
- For \( \text{Li}^{2+} \) (Z = 3, n = 3):
\[
E_3 = -\frac{13.6 \cdot 3^2}{3^2} = -13.6 \, \text{eV}
\]
- Energies are not the same.
4. Option (4): \( \text{H}(n=3), \text{Li}^{2+} (n=2) \)
- For \( \text{H} \) (Z = 1, n = 3):
\[
E_3 = -\frac{13.6 \cdot 1^2}{3^2} = -1.51 \, \text{eV}
\]
- For \( \text{Li}^{2+} \) (Z = 3, n = 2):
\[
E_2 = -\frac{13.6 \cdot 3^2}{2^2} = -30.6 \, \text{eV}
\]
- Energies are not the same.
Final Answer:
- The pair of species having the same energy is:
\[
\boxed{\text{Li}^{2+} (n=3), \text{Be}^{3+} (n=4)}
\]
This corresponds to option (2).