Step 1: Understanding Dipole Moment A molecule has a permanent dipole moment if:
- It has polar bonds due to electronegativity differences.
- The molecule has an asymmetrical shape, leading to a net dipole moment.
Step 2: Analyzing the Given Molecules
- Nonpolar Molecules (No Dipole Moment):
- \( CCl_4 \) (tetrahedral, symmetrical)
- \( SiF_4 \) (tetrahedral, symmetrical)
- \( XeF_4 \) (square planar, symmetrical)
- \( BeCl_2 \) (linear, symmetrical)
- Polar Molecules (Have Dipole Moment):
- \( NF_3 \) (trigonal pyramidal, asymmetric)
- \( H_2S \) (bent, asymmetric)
- \( HBr \) (linear, polar bond)
- \( SF_4 \) (see
-saw shape, asymmetric)
- \( SnCl_2 \) (bent, asymmetric)
- \( BrF_5 \) (square pyramidal, asymmetric)
- \( SO_2 \) (bent, asymmetric)
Step 3: Counting Molecules with Dipole Moment Polar molecules: \[ NF_3, H_2S, HBr, SF_4, SnCl_2, BrF_5, SO_2 \] Total = 7 molecules. Thus, the correct answer is \( \mathbf{(2)} \ 7 \).
If \[ \int e^x (x^3 + x^2 - x + 4) \, dx = e^x f(x) + C, \] then \( f(1) \) is:
In Bohr model of hydrogen atom, if the difference between the radii of \( n^{th} \) and\( (n+1)^{th} \)orbits is equal to the radius of the \( (n-1)^{th} \) orbit, then the value of \( n \) is: