(i) \(4^3 = 4 \times 4 \times 4 = 64\)
\(3^ 4 = 3 \times 3 \times 3 \times 3 = 81\)
Therefore, \(34 > 43\)
(ii) \(5^3 = 5 \times 5 \times 5 =125\)
\(3^ 5 = 3 \times 3 \times 3 \times 3 \times 3 = 243\)
Therefore, \(35 > 53\)
(iii) \(2^8 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 256\)
\(8^ 2 = 8 \times 8 = 64\)
Therefore, \(28 > 82\)
(iv) \(100^2\) or \(2^{100}\)
\(2^{ 10 }= 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 1024\)
\(2^{ 100}\) = \(1024 \times 1024 \times 1024 \times 1024 \times 1024 \times 1024 \times 1024 \times 1024 \times 1024 \times 1024\)
\(100^2 = 100 \times 100 = 10000\)
Therefore, \(2^{100} > 100^2\)
(v) \(2^{10}\) and \(10^2\)
\(2^{ 10 }= 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 1024\)
\(10^2 = 10 \times 10 = 100\)
Therefore, \(2^{10} > 10^2\)
Match the items given in Column I with one or more items of Column II.
Column I | Column II |
(a) A plane mirror | (i) Used as a magnifying glass. |
(b) A convex mirror | (ii) Can form image of objects spread over a large area. |
(c) A convex lens | (iii) Used by dentists to see enlarged image of teeth. |
(d) A concave mirror | (iv) The image is always inverted and magnified. |
(e) A concave lens | (v) The image is erect and of the same size as the object. |
- | (vi) The image is erect and smaller in size than the object. |