Step 1: Gauss’s Law Statement
According to Gauss’s Law: \[ \oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{\text{enc}}}{\epsilon_0} \] where: - \( \oint \mathbf{E} \cdot d\mathbf{A} \) = Total electric flux, - \( Q_{\text{enc}} \) = Enclosed charge,
- \( \epsilon_0 \) = Permittivity of free space.
Step 2: Choosing a Gaussian Surface
- Consider an infinite charged plane with surface charge density \( \sigma \).
- The charge is uniformly distributed over the plane.
- We use a Gaussian cylinder (pillbox) that extends equally on both sides of the plane.
Step 3: Applying Gauss’s Law
- The flux is perpendicular to the surface.
- The total flux through the two flat surfaces of the pillbox is: \[ \oint \mathbf{E} \cdot d\mathbf{A} = E A + E A = 2E A \] - The enclosed charge is: \[ Q_{\text{enc}} = \sigma A \] - Applying Gauss's Law: \[ 2E A = \frac{\sigma A}{\epsilon_0} \] \[ E = \frac{\sigma}{2\epsilon_0} \] Thus, the electric field due to an infinite plane sheet is: \[ E = \frac{\sigma}{2\epsilon_0} \]
Commodities | 2009-10 | 2010-11 | 2015-16 | 2016-17 |
---|---|---|---|---|
Agriculture and allied products | 10.0 | 9.9 | 12.6 | 12.3 |
Ore and minerals | 4.9 | 4.0 | 1.6 | 1.9 |
Manufactured goods | 67.4 | 68.0 | 72.9 | 73.6 |
Crude and petroleum products | 16.2 | 16.8 | 11.9 | 11.7 |
Other commodities | 1.5 | 1.2 | 1.1 | 0.5 |
Categories of Reporting Area | As a percentage of total cultivable land (1950-51) | As a percentage of total cultivable land (2014-15) | Area (1950-51) | Area (2014-15) |
---|---|---|---|---|
Culturable waste land | 8.0 | 4.0 | 13.4 | 6.8 |
Fallow other than current fallow | 6.1 | 3.6 | 10.2 | 6.2 |
Current fallow | 3.7 | 4.9 | 6.2 | 8.4 |
Net area sown | 41.7 | 45.5 | 70.0 | 78.4 |
Total Cultivable Land | 59.5 | 58.0 | 100.00 | 100.00 |