Let the number of one-rupee coins be \( x \), the number of 50-paisa coins be \( y \), and the number of 25-paisa coins be \( z \). The ratio of the number of coins is given as:
\[
\frac{x}{y} = \frac{2.5}{3} = \frac{5}{6}, \quad \frac{y}{z} = \frac{3}{4}.
\]
Thus, \( x = \frac{5}{6} y \) and \( y = \frac{3}{4} z \).
The total amount is Rs. 210. The value of the one-rupee coins is \( x \), the value of the 50-paisa coins is \( \frac{y}{2} \), and the value of the 25-paisa coins is \( \frac{z}{4} \). Therefore:
\[
x + \frac{y}{2} + \frac{z}{4} = 210.
\]
Substitute \( x = \frac{5}{6} y \) and \( y = \frac{3}{4} z \) into this equation:
\[
\frac{5}{6} y + \frac{y}{2} + \frac{z}{4} = 210.
\]
Solving this equation gives \( x = 100 \).